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Surface Orbital Magnetism 

H e r r 6  K u n z  1 
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We compute the surface correction to the density of states of a particle in a 
convex box subjected to a magnetic field. Applying these results to orbital 
magnetism, we find that at high temperatures or weak magnetic fields the 
surface magnetization is always paramagnetic, but oscillations appear at low 
temperatures. In two dimensions they can give very large paramagnetic con- 
tributions near integer values of the filling factor. Explicit formulas are given for 
the zero-field susceptibility and for samples with a cylindrical shape in arbitrary 
magnetic field. 
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1. INTRODUCTION 

There is presently a renewed interest in size effects on the physical  proper-  
ties of small  metall ic  or  semiconductor  systems. In the ballistic regime, it is 
a reasonable  approx ima t ion  to ignore the interact ion of part icles between 
themselves or  with impuri t ies  and to consider  collisions with the walls as 
the dominan t  effect. If the part icles are subjected to a magnet ic  field, their 
mot ion  in the box leads to the format ion  of a magnet ic  moment ,  resulting 
in the so-called orbi ta l  magnetism. In the bulk limit, the systems shows a 
d iamagnet ic  behavior  at low magnet ic  fields, as was first discovered by 
Landau  in his classic work. An interest ing quest ion is to investigate the 
possible change in this behavior  when the size of the system is reduced. The 
first correct ion expected is a surface one, which one can reasonably  expect 
to be able to compute  analytically.  At still smaller  sizes, in the mesoscopic 
range, we enter into a regime where the system is a quan tum bil l iard and 
the system could only be analyzed numerically,  at least presently,  and  
proper t ies  character is t ic  of quan tum "chaotic" systems should appear .  
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In this article, we will be concerned with the problem of computing the 
surface correction to the bulk behavior. Since the 1930 paper of Landau, 
up to the present day, many authors have made an attempt at this tricky 
problem. A brief summary of the history of the problem and many referen- 
ces can be found in a 1975 paper of Angelescu et ak ~1 and in a very recent 
review by Ruitenbeeck and van Leeuwen/2) The Roumanian authors were 
the first to compute the surface susceptibility in zero field of a parallel- 
epiped in a magnetic field perpendicular to some faces. The other problem 
on which exact results are available is that of a thin plate parallel to the 
field, t2~ More recently, various approximate treatments have indicated a 
paramagnetic contribution of the surface term in more general cases, t3' 4) 

In this work, we first derive a general expression for the surface den- 
sity of states of a convex body. Following Kac's strategy in his famous 
article tS~ on the same problem without a magnetic field, we analyze the par- 
tition function: This allows us to compute the surface magnetization. In the 
two-dimensional case, it can be expressed in terms of zeros of the Weber 
cylinder function. In this case also we can find a relationship between both 
the bulk and surface magnetization and the surface current of a semiinfinite 
system. Such relations should hold even in the presence of interactions. 
At a very low temperature, when the filling factor is near an integer, the 
surface magnetization is paramagnetic and grows with the square root of 
the logarithm of the temperature. 

In the usual three-dimensional case we give an explicit expression for 
the surface magnetization for samples with a cylindrical shape in a 
magnetic field directed along the axis of the cylinder or perpendicular. The 
zero-field surface susceptibility is computed for arbitrary convex samples. It 
is paramagnetic. We show that at high temperatures (Maxwell-Boltzmann 
statistics) the surface magnetization is paramagnetic for any value of the 
magnetic field and any convex shape. However, at low temperatures, at 
least for cylindrical shapes, the surface magnetization shows de Haas -  
van Alphen-type oscillations. 

2. D E N S I T Y  OF STATES 

We want to consider the motion of a quantum particle of charge e and 
mass m in a box AL subjected to a constant magnetic field B in the z axis. 
We choose as unit of energy e =  heB/mc and of length l =  (hc/eB) 1/2. In 
these units the Hamiltonian is given by 

1 2 1 - _ 1 3 2  (2.1) 
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with Dirichlet boundary conditions on the surface dA L. Tlae boxes A L are 
all obtained from the box A by a dilating factor L, i.e., 

} 
1 2 When we will discuss the two-dimensional problem, the term -_~c3 will be 

absent from the Hamiltonian and the motion will be restricted to the x-y  
plane. We are interested by the integrated density of states NAL(2) of this 
system 

NAL(2) = ~ (2.3) 
n :t; n ~ ). 

where ~,, are the eigenvalues of the Hamiltonian. Our purpose is to com- 
pute the asymptotic behavior of this quantity for large boxes A c, i.e., when 
L ~ ~ .  On physical grounds one expects a contribution proportional to 
the volume [ALl =LaIA]  of the box and one of the order of the surface 
10ALl of this box. We will show that, when d = 2 ,  3, 

NA,(2) .-~ L a Ial n0.) + L d- lSe,l(~.) (2.4) 

It turns out, however, that whereas in two dimensions the surface contribu- 
tion is indeed proportional to the perimeter of the box, i.e., so,,(2)= 10AI s(2), 
in three dimensions seA(;t) depends on the specific shape and of the orienta- 
tion of the box with respect to the magnetic field. 

Instead of considering directly NAL, we will analyze the behavior of its 
Laplace transform or in more physical terms of the partition function 

Z , L =  tr e x p -  triAL = / ~  exp( - t2 )dNA,(2)  (2.5) 

We will then essentially follow Kac's strategy when he analyzed the same 
problem in the absence of a magnetic field. The partition function can be 
expressed by means of the fundamental solution PAL(Xl y; t) of the heat 
equation 

0 
"~ PAL = -- H.~LP AL (2.6) 

The partition function is given by 

Z AL = ~AL dx P A,(xl x; t) (2.7) 

8 2 2 / 7 6 / I - 2 - t 4  
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From now on, we will assume that A is compact and convex. If x ~ A, let 
q(x) be the point of the boundary OA closest to x (for Lebesgue almost all 
x it is unique). If we denote by A(x)  the half-space bounded by the plane 
l(x) tangent at OA in q(x), then A c A ( x ) .  We can then introduce the 
fundamental solution of the heat equation 

O 
Ot P AtAxl = -- H At.lx)P AL(.~I (2.8) 

where HAax~ is the same Hamiltonian as the one defined in Eq. (2.1), 
except that now it is defined on the half-space AL(x) and Dirichlet bound- 
ary conditions are imposed on the plane l(x). 

Consider now the fundamental solutions of the usual heat equations 

0 , Q ~ , =  1 ~AA,QaL (2.9) 

O,QALtxl = l -id ALtx~Q/iLtX) (2.10) 

where A n is the Laplacian with Dirichlet boundary conditions on OA. We 
have the basic inequality, if x ~ A,  

IPAL(xlx; t) -- PA,cx)(xlx; /)l ~< QAax)(xlx; t) -- QA,(xlx;  t) (2.11) 

This inequality follows easily from the following functional integral repre- 
sentations of PA and QA, (6) 

PA(XIX; t )= I d/~.~: tx(co) exp - i  Io og,(s) do92(s) (2.12) 

QA(xlx;  t) = I dW~x: ,x(og) (2.13) 

dP~x: ,x is the conditional Wiener measure for paths starting from x at time 
0 and ending at x at time t, but remaining in A. 

The inequality follows from the fact that the magnetic field contri- 
bution in PA is of modulus one, and A c A(x)  as a consequence of the 
convexity of A. 

From this inequality we can see that 

and 

ZA,(t) = IAL dx P ALIx)(xIx; t) + r,t,(t) (2.14) 

0 <~ rAL(t) <<. fa dx [QAL~x~(xlx; t) -- QAL(xlx; t)]  (2.15) 
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But we have the scaling relationship 

Q a L ( x I x ; t , = L - d Q A ( L [ L ; - ~ _  ) (2.16, 

and we can see that it follows from Kac's result that 

rAt(t) = O(L a- 2) (2.17) 

In this way we have reduced the computation of the partition function 
(with an L d-2 accuracy) to the problem of computing PAa.~l(xlx; t). This 
amounts essentially to replacing the boundary locally by its tangent plane. 
We will show that 

P A~tx)( x l x; t) = pt( u; n3( x ) ) (2.18) 

where u denotes the distance of x to the boundary OA L and n3(x) denotes 
the z component (i.e., along the direction of the magnetic field) of the 
inward normal n(x) at the point x of the boundary closest to x. One can 
interpret p,(u; r/3(x)) as the density of particles constrained to move in the 
half-space A t ( x )  at distance u from the boundary. One expects on physical 
grounds that l i m , , ~  p t ( u ; r l 3 ( X ) ) = p , ( c x 3 ) ,  where p , (m)  is the density in 
the infinite system. The approach of p,(u; n3(x)) to its limit p , (m)  is rapid 
enough so that 

d u  u p t ( u ;  n3(x ) )  < oo (2.19) 

We can therefore write 

ZA,(t)  = L a IAI p , ( ~ ) -  L a- 1 I o  a 3 dr~zP, ( z ;n  (r))+raL(t) 

dist(r, OA ) <~ :/ L (2.20) 

so that we get 

ZAL(t) = L d IAI p,(oo) - L d- ~ f-~ 
Jo 

0 
dz _Y~A da z ~z p t( z; n3(a)) + O( L a- z ) 

(2.21) 

We have thus shown that if we can find the representations 

f? P'(oo ) = t e-'; 'n(2) d2 (2.22) 
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and 

du [ p , ( u ; n 3 ( a ) ) - p , ( o o ) ] = t  e- ' ;s(2;n3(a))d2 (2.23) 

then 

fo ' e- '; 'N AL(2) d). 

=LalAI  e - a n ( 2 ) + L  a-t  e- ' ;s ,~A(2)d2+O(L a-2) (2.24) 

with 

SaA(J') = I~,,i do" S().; n3(o')) (2.25) 

From Eq. (2.24) it should follow that 

N AL()~) ~ L a IAI n(2) + L a- ts,~.~(2) (2.26) 

This result, however, is stronger than (2.24), and more information is 
needed to derive it. We discuss this point in the Appendix. It can be proved 
that quite generally 

NA L 
lim (2)=n(2)  

L ~  

For the surface term, one can only prove that 

1 
lim [NAL(2)--[A[ Ldn(2)] = s,,a(2) 

when A is a parallelepiped. The convergence is the so-called weak con- 
vergence of measures, appropriate for the thermodynamics. 

To proceed further, we need to analyze the density p,(u) of a half- 
infinite system. 

In the two-dimensional case, if we choose the origin on the line 
delimiting the allowed domain, the Hamiltonian becomes 

1 2  l (~a ,  ' h + = - ~ O, + ~ - u)  2 (2.27) 
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defined on the half-space u >/0, and with Dirichlet boundary  conditions at 
u = 0. We therefore have 

f + ~ d k  
p,(u)  = -,~ ~ (ul exp - t h + ( k )  lu) (2.28) 

where 

h + ( k ) =  , 2 - ~0,, + �89 + u) 2 (2.29) 

is now defined on the half-line u>_-0. If  we call h(k)  the same operator as 
the one in (2.29), but defined on the full line, then we claim that 

i 
+ ~ d k  

p,(c~) = _ ~. ~ (u[ exp - t h ( k )  lu) (2.30) 

p , ( ~ )  is easily computed:  

1 e x p - t  n + ~  (2.31) 
P , ( ~ 1 7 6  =o 

we have p , ( u ) ~ p , ( o o )  and if we write 

f+~ 
l dk 

p , ( u ) - o , ( o o ) =  _ ~ ~-~ (ul exp - t h + ( k ) - x e x p  - t h ( k ) x  lu) (2.32) 

with 

we should have 

X(u)= {10 if u>~0 
if u < 0  (2.33) 

~o au [p,(u) - p,( oo ) ] 

1 ~ +~ 
-- 2re J_ ~ dk [ tr  exp - th + (k) - tr g exp - t h (k )Z]  (2.34) 

if the trace of the operator  on the right-hand side is finite and integrable, 
as can be checked, indeed. If we call E ~ ( k )  and E;.(k) the spectral projec- 
tors of h+(k )  and h(k),  in the energy range ( - c ~ ,  2), then we can write 

f f  t I~ _,~ I +~ 
du [ p , ( u ) - p , ( ~ ) ]  =-2-~ o d2e -o~ dktr[ET. ( k ) - z E ( k ) z ]  

(2.35) 
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We can therefore summarize the results in two dimensions by the following 
equations. The bulk density of states n().) is given by 

n(;t) = ~  ,,=o (2.36) 

and the surface density of states is given by 

1 i + ~  s(2) = ~ dk tr[E:+.(k) - zE(k)z]  
--02_ 

(2.37) 

We will give later a more explicit expression for this quantity in terms of 
zeros of cylinder functions. In three dimensions, we proceed in the same 
way. Choosing the origin on the plane, with normal n, and calling b the 
unit vector in the direction of the magnetic field and 0 the angle between 
the magnetic field and the normal n, we choose the axes as follows (if 
sin 0 # 0): 

b - c o s  0 n  n A b 
e l =  sin0 ' e 2 - s i n 0 ,  e3 =n  (2.38) 

Since the density is gauge independent, we choose the useful gauge 

A I = A 3 = 0 ,  A2= - s i n O x 3 + c o s O x  I 

The appropriate Hamiltonian is therefore 

H + = - ~ ~ d ., + sin Ou - cos Ov - ~ O ,, (2.39) 

in the half-space u >~0, with Dirichlet boundary conditions on the plane 
/,/ ~ 0 .  

If we call xl = u, xz  = w, x 3 = v, the density p,(u)  is given by 

: + ~ d k  p,(u) J _ ~  -~n (uvl exp - t H  +(k ) luv) (2.40) 

H §  is the same operator as the one in (2.39), but where (1/i)a,. is 
replaced by k. 

p,(u)  does not depend on v, because if V ~ ( u v l u ' v ' )  designates the 
kernel of exp - t H + ( k ) ,  we have, for any b, 

k + b c o s  0 U,l)J V+ (u v + b [  + b ) =  V ~ ( u v l u ' v ' )  (2.41) 
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Hence when cos 04:0 we can rewrite (2.40) as 

p,(u) = Icos 0__.~1 f +~ dv (uvl exp --tH+(O)luo) (2.42) 
27r -oo 

Introducing the operator H(0), which is the same as/-/+(0) but defined on 
the whole space, we will have 

p~(u )=  Icos 01 f + ~  
2----~ dv (uvl exp -tH(O) [uv) (2.43) 

- - c o  

In fact, 

1 ~ ( 1 )  
1 - ~ e x p - t  n + ~  (2.44) 

p,(oo) (27rt) 1/2 2rt,,=o 

From (2.42) and (2.43), we see that we can write 

I : d u  [p,(u)-p,(oo)]  = tr[exp - t H + ( O ) - z  exp (2.45) 
Icos 0l 

~ t n ( o  ~ ~ ~ 2rr 

There are two special cases where this expression simplifies. If cos 0 = 0, we 
are essentially in the two-dimensional case; then 

f:  du [p,(u)-p,(oo)] 

_ 1 1 f + ~ d k t r [ e x p _ t h + ( k ) _ x e x p _ t h ( k ) z ]  (2.46) 
(2nt) 1/2 2n _o~ 

as can be seen by using (2.40) and (2.34). 
If cos 0 = _+ 1, the problem is that of a free particle in half-space and 

a harmonic oscillator in the whole space. Therefore 

f :  - 1  1 ( 2 ) ' / 2  1 ~ e x p - t ( n + ~ ) ( 2 . 4 7 ,  
du[p t (u ) -P ' (~176  (2~t ~1/22 2-~n ,, = o 

To summarize, io the general case we have for the bulk density of states the 
familiar Landau formula 

1 rt E~/21( ~),,2 n(2) = / : .  2 - n - (2.48) 
x/z n = 0  
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and for the surface density of states 

s~A(2) = Ie A da s(2, 0(~)) (2.49) 

where 

Icos 01 
s(2, 0 ) =  2-----~tr[E~.(O)-;tE;.(O)z] (2.50) 

E;+.(O) and E;.(O) are the spectral projectors in the energy range ( - o o ,  2) 
of the Hamiltonian 

H+ = - �89 + �89 0 u -  cos Ov) 2 (2.51) 

defined on u/> 0, with Dirichlet boundary conditions on u = 0 and 

H =  - �89 + �89 0 u -  cos Or) 2 (2.52) 

defined on the whole space R 2. 
Apart from the special cases 0 = 0, 7t/2, n, we have not succeeded in 

finding a more explicit expression for s(2, 0). There may be some hope to 
solve this problem, however, because at the classical level the Hamiltonian 
H+ describing a harmonic oscillator with a wall is integrable, although not 
separable. 

The special cases 0 = 0, 7z/2, rt will allow us, however, to find expres- 
sions for the density of states when the volume has a cylindrical shape and 
the magnetic field is directed along the axis of the cylinder or perpendicular 
to it. The general formula (2.50) can be used to compute the density of 
states in small magnetic fields. 

3. THE T W O - D I M E N S I O N A L  CASE. M A G N E T I Z A T I O N  AND 
SURFACE CURRENT 

In order to analyze more thoroughly the two-dimensional case, we 
need to look at the spectral properties of the Hamiltonian 

h + ( k ) = - i O x + l  2 �89 (3.1) 

defined on the half-line x/> 0, with Dirichlet boundary condition at x = 0. We 
denote the ordered eigenvalues by e,(k), n =0,  1, 2 ..... and e,,(k)< e,+ l(k). 
To the eigenvalue e,(k) corresponds the unnormalized eigenfunction 

~ln, k(X ) = D~ _ 1/2(%//-2 (x+k) )  (3 .2)  
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where D~,(x) is the usual Weber cylinder function. The equation for the 
eigenvalue is 

D~_ re(x /2  k) = 0 (3.3) 

The following properties of the eigenvalues can be established: e,,(k) is 
strictly increasing in k. 

We have e,( - ~ )  = n + 1/2 and more precisely 

(x/~ k)-',, * ' 
e.(k)-e , , ( -oo)~ n!(2rt), /2 e x p - k  2 (3.4) 

when k --+ - oo. 
When k ---, + ~,  e,,(k) grows quadratically in k. Finally 

~ , , ( 0 )  = 2 n  + 3 ( 3 . 5 )  

We can uniquely define the function k,(2)  by the relation e,,(k)= 2. Now, 
x/~ k , ( 2 ) =  x,,(2) is a zero of D:_ L/2(x). If 2 -  1/2 = N +  0, where 0 e (0, 1) 
and N a positive integer, then D:._l/2 has N +  1 finite zeros, ordered as 
Xo>Xl> . . .>x , .  When 2 - 1 / 2 - - * N  +, XN(2 ) - - * - o o ,  and when 
2 - 1 / 2 - *  ( N +  1) - ,  all the zeros tend to the N +  1 finite zeros of D u + l ,  
which is proport ional  to a Hermite polynomial. With these preliminaries 
we can analyze the density s().). Equation (2.37) tells us that it is given by 

- 1 s ( 2 , = l  ~+~dk[~, O ( 2 - e , ( k , ) - ~ O ( 2 - - ~ - n ) c , , ( k , ]  (3.6, 

0 is the usual Heaviside function and 

c . (k ) - -  dy ~o~,(),) (3.7) 

q),(y) is the normalized eigenfunction of the usual harmonic oscillator 

1 "~ I X 2  h =  - ~ 0 ~ +  (3.8) 

Since e,,(k)i> n + 1/2, we can rewrite (3.6) as 

"i i s 
1 ] +~ 

s(2) = ~ dk [0(k.(2)  - k) - c , (k) ]  (3.9) 

Using the fact that ~0,](y) is even, we have 

I +~ dk [O(k.(2)-k)-c .(k)]  = k . ( 2 )  (3.10) 
--~X2_ 
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Thus we get the desired expression 

1 l [ ~ ' - m ]  ( ~ )  
st2)= /x~2r~ Y" x.  2 -  (3.11) 

x/z n = O  

where x,(v) is the nth zero of Dr(x), the zeros decreasing when the index 
n increases. 

It is clear that the index n is nothing else than the Landau level index. 
When 2 -  1/2 is not an integer, the zeros x , ( 2 -  1/2) are increasing in 

2, therefore s(2) is increasing. Since if we start from the value of 2 - 1/2 = N 
and increase it until it reaches the value 2 -  1/2 = N +  1, the zeros tend to 
those of DN+ l(x), whose sum vanishes because of the parity of DN+ l(x); 
we conclude that s(2) ~< 0. Thus we conclude that when 2 -  1/2 is between 
the integers N and N +  1, s(2) is a negative increasing function which 
diverges to - oo near N as 

s ( 2 , ~ - 2 - ~ [ x / ~  N + l / 2 1 n 6 ]  ~/~_] (3.12) 

where 
1 

6 = I n  (3.13) 
2 - N -  1/2 

This result follows from the asymptotic behavior of e.(k) as expressed 
in (3.4). 

When 2 approaches N +  3/2, s(2) vanishes. 
The complicated asymptotic behavior revealed by (3.12) indicates that 

the energy levels are packed in a very intricate way near the LandatJ levels 
in a large but finite system. Let us discuss now the thermodynamic proper- 
ties. We consider an assembly of fermions of.chemical potential /~ in a 
convex box of volume V and area A. The pressure of the finite system is 
given by 

I /  f o  ze .... ~pV=2 In[1 +ze -'x] dNA(X)=2t 1 +ze -'x NA(X) (3.14) 

The factor 2 comes from the spin degeneracy, since we neglect the Zeemzn 
energy, t =~heB/mc is the inverse temperature in magnetic units, and 
z = e a" is the fugacity. For a large sample, we have shown that 

2V 
BpV=--~ t  ~. ln[1 +ze -'~'+'/2~] 

n = 0  

+ ~_ (2Xt3,1/2 ; o  ze-tX 1 + ze -'x s(x) dx (3.15) 

where 2 = (2rch2~/rn) I/2 is the thermal wavelength. 
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The magnetization measured in the Bohr unit lab = he/2mc will there- 
fore decompose into a bulk .contribution 

M b 4V ~ In[1 + z e  -a"+' /2)]  -~-~B = --~- 0, (3.16) 
n = O  

and a surface contribution 

f :  z e  - tx M.__2 = 4A c3,(2nt3)u 2 s ( x )  dx  (3.17) 
lab ). 1 + z e - ' "  

We will see that in the small magnetic field limit, t,~ 1, the surface 
magnetization is positive (paramagnetism), whereas the bulk magnetization 
is of course negative (diamagnetism), as is well known. The same result 
holds quite generally at high temperatures, where we can use Boltzmann 
statistics, namely replace z e - " / (  I + z e - ' X )  by ze - % 

We will also prove an identity relating both the bulk magnetization 
and the surface one to the surface current of a semiinfinite system. This 
identity indicates that the bulk and surface magnetization tend to have 
opposite signs. 

It is interesting, however, to analyze the expression for the surface 
magnetization in the zero-temperature limit. It can be expressed as 

Ms 4A(2~) '/2 _,/213f v ] 
- - =  v s ( x )  dx  - vs(v)  (3.18) 
lab lv L 2 Jo 

where v =la/E is essentially the ratio of the Fermi energy to the magnetic 
one, and 

2~ 1/2 
IF--  - -  

- \ # m  / 

is the Fermi wavelength. We can see that 

f ( v )  = 3 s ( x )  dx  - vs(v)  

is a decreasing function of v when v is between N +  1/2 and N +  3/2, since 
s(v)  is negative and increasing in this range of v for any integer N. 

On the other hand, each time u approaches N +  1/2 from above, f (v)  
diverges like 

N +  1/2 f .  1 ~1/2 
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according to (3.12), but when v approaches N +  3/2 from below, f(v) tends 
to "--fu+3/'-s(x)dx, which is negative. Thus we see that the surface 3jo 
magnetization will be positive (paramagnetic) when v ~ N +  1/2 and even 
divergent like 

Ms 4A(N+l/2 1 ~,/2 
#B lv \ ~ l n  (3.19) v - N - 1/2,/ 

and decrease to a negative value (diamagnetism) when v approaches 
N + 3/2 from below. 

At very low temperatures, the singularity will be washed out and 

Ms 4A(N+I/21n )l/z 
PB Iv \ 2n t 

but one will see very strong oscillations opposite in sign to those of the 
bulk magnetization. These oscillations, like the de Haas-van Alphen one, 
are the remnants of the Landau level structure. 

Let us finally look at the relation between the magnetization and 
surface currents. 

Consider the semiinfinite system x >~0 and a particle subjected to a 
magnetic field, whose dynamics is described by the Hamiltonian 

h + = - ~  .O~.+~ O>.-x (3.20) 

There will be a current j(x) flowing along the y axis, induced by the 
magnetic field. This current will be given by 

i 
+ ~ r  

j ( x ) =  --z dk (k+x)(xl exp -th+(k)Ix) 
- o r .  

(3.21) 

where the Hamiltonian h+(k) is given in Eq. (3.1). We have used the 
Boltzmann distribution. In the more interesting case of Fermi statistics the 
operator on the right-hand side of (3.21) should be replaced by 

z exp -th+(k) 
1 + z exp - th + (k) 

If we write 

Lk = e x p  - th +(k)- ~ exp -th(k) Z (3.22) 
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then we can see that 

--7 f+zr j(x) = @ dk (k + x) Lu(xlx) 

and we have 

fl ~: z J  "+~ d x j ( x ) = - ~  -o~ d k t r ( x + k ) L ,  

and 

f0 ~- Z I +~ dxxj(x)= --~-~ _ dktrx(x+k)Lk 
o c  

On the other hand, 

where 

but 

and 
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(3.23) 

(3.24) 

(3.25) 

OktrLk= --ttr(k+x)Lk--ttr(k+x)xVkX--OktrXV, x (3.26) 

Vk =exp -th(k) (3.27) 

f +~dk c3 k tr L ,  = 0  (3.28) 
--0C2 

f dk O, tr xg ,  x = e-,i,,+ 1/21 dy ~o y) 

= _ ~ e-,,,+ 1/2, (3.29) 
n=O 

dk tr(k + x)xg, z= e -'l"+ ml dk r y) 
- c ~ . ,  t t  ~ O - o D  

1 - t (n+  1/2• = (n + 5)e (3.30) 
n~O 

Thus we see that integrating Eq. (3.26) and using Eqs. (3.28)-(3.30) and 
the definition (3.23), we get 

t f :  j(x) dx=~-~n,~=o [ -  l + t (n + ~) ] exp - t  (n + ~) (3.31) 
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Io z t j ( x )  d x = - ~ - ~ O , t  e x p - t  n +  (3.32) 

It can be seen from Eq. (3.16) that the right-hand side of this equality is 
( - -22 /4V)Mb/ I~B ,  where Mb is the bulk magnetization with Boltzmann 
statistics (first order in z). 

The case of Fermi statistics can be treated by expanding the Fermi 
operator in z when Izl < 1, 

z e x p  - th 
1 + z exp - th - ( - z)J exp - tjh j=l 

using the identity (3.32) for each term in the sum, we get 

M b _  4V I o  - -  22 t j ( x )  d x  (3.33) 
ItB 

The result remains valid when z > 1 by analytic continuation. Such a result 
was first obtained by Macris et al. (7~ by a different technique and 
generalized to some interacting situations. Let us write 

We have 

We rewrite this as 

where 

q(t)  = t e - ' X s ( x )  (3.34) 

i + ~ d k  q ( t ) =  - ~  ~ t r  Lk (3.35) 

f+oo dk 
v / t q ( t ) =  - ~  ~ t r [ U ~ - ( l ) - X U k ( 1 ) Z ]  (3.36.) 

S 
U~ (s) = exp - ~ [ - O] + (k + xt)2 ] (3.37) 

the operator in the exponential being defined on the half-line x >10. Uk(S) 
is the same operator, but defined on the whole line. 
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From this equation it follows that 

f+~ dk { - t r  x(x+k)[U~(1)-xUk(1)X]  + a(k)} (3.38) O ' x/~ q( t ) = - ~ 

where 

a (k )=  d s t r x [ U k ( l - s ) , x ( k + x ) ]  Uk(S)Z 

It is easily seen that a(k) is integrable and odd in k. Thus we have the iden- 
tity 

f+~ dk O, ~ q(t) = - x/~ _ ~ ~ tr x(x + k)Lk (3.39) 

and therefore, from (3.29) and (3.17) it follows that 

Ms 4A(2m) 1/2 Io  
ltB 2 xj(x) dx (3.40) 

for the Boltzmann distribution. The case of Fermi statistics can be  handled 
similarly and the identity (3.40) still holds. Equations (3.33) and (3.40) 
giving the bulk magnetization as M b ~ - S ~ j ( x ) d x  and the surface 
magnetization as Ms ~ S~ xj(x)dx should remain valid even in the inter- 
acting case, at least when the system does not show a phase transition. It 
would be particularly interesting to see if they keep their validity in the 
quantum Hall regime, when the filling factor is a fraction associated with 
plateau in the Hall conductivity. If not, they could characterize the nature 
of these incompressible states. We can also remark that these identities 
explain qualitatively that the surface magnetization tends to be opposite to 
the bulk magnetization, favoring paramagnetism at low fields. We have 
been unable to generalize the identity for the surface magnetization to the 
three-dimensional case. There is a term proportional to sin 0 S~ xj(x)dx, 
but to which is added another one, whose physical interpretation remains 
elusive. 

4. S A M P L E S  W I T H  A C Y L I N D R I C A L  S H A P E  

For a large sample of volume V and area A, the pressure of a three- 
dimensional system is given by 

2 V i~ ~ ze-'X [3PV=-~ (2~t)3/2 t ~ l + ze -'.;n(x) dx 

2A - -  I X  

, o  | Zeze- '~ g~A(x) dx (4.1) + _2_5_ 2rtt 2 1+ 
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where 

and 

n(x)-,di 2 ,, oE x - n -  
t/2 

(4.2) 

gaA(x)=l--~l A dots(x, O(a)) (4.3) 

The bulk pressure is of course the familiar Landau expression. 
The surface magnetization is given by 

Ms 4A2n att2 f ~  z e - "  
PB 22 1+ ze- 'xg~A(x) dx (4.4) 

Since we can compute explicitly s(x, O) only for special values of 0, we 
need to turn to special types of shapes in order to get an explicit expression 
for the magnetization for arbitrary magnetic fields. 

Let us assume therefore from now on that the sample has the shape 
of a cylinder with an arbitrary convex base. The magnetic field will be 
assumed to be either parallel or perpendicular to the axis of the cylinder. 

The surface of the sample parallel to the magnetic field, of area A H, 
will give a contribution to the magnetization given by 

M~ I 4A II .2n 'J'~ 1 - '"  
/ ~ B  2 2 O,t2 _ _  ze + ze_---;-~.~ SiM (x) dx (4.5) 

and the part perpendicular to the magnetic field, of area A • will give 
another contribution, 

M~ fo~ ze -  'X 4A2~;2n s . (x) dx (4.6) 
PB 1 + ze -'x 

and the surface magnetization will be 

M ~ = M ' ~ I + M ~  

According to Eq. (2.47), s l ( x )  will be such that 

(4.7) 

which gives 

~0 ~C�84 
t s• exp - t x =  - - -  1 e x p - t  n + ~  

87[ n=O 

1 E 11 

(4.8) 

(4.9) 
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Therefore 

A 1 
/.tB 2TO,t ln[1 +ze -""+1/2~] (4.10) 

n = O  

This expression shows that 

M~ = -- �88 ) (4.11) 

where Mb(2d) is the bulk magnetization of a two-dimensional system of 
volume A ' .  The presence of the minus sign shows that at weak field or high 
temperatures this contribution is paramagnetic. It also indicates that at low 
temperatures M~ will show anti-de Haas-van Alphen-type oscillations. 

Equation (2.46) gives for su(x ) 

,Io dxe-'Xsll(x)=(2~),/zl 0 dxe-"s(x) 

and therefore 

1 : x 1 

s,, (x) = Jo dy (x - ),)l/i s (y)  (4.12) 

We see that sll(x) is negative. Thus both surface contributions give a 
negative surface pressure. Equation (4.12) shows that, contrary to the two- 
dimensional case, the density of states Sll (x) does not diverge at a Landau 
level, but rather vanishes like [e In(I/e)] 1/2, where e = x - N - 1 / 2 .  

The precise dependence of M[ I in the magnetic field is not very easy 
to analyze from Eqs. (4.6) and (4.12), even at zero temperature. It should, 
however, be possible to compute numerically this function from the expres- 
sion we derived for s(x). We would expect oscillations, as in the case M { .  

Finally, we would like to remark that often the magnetization is 
needed for a system in which the density and not the chemical potential is 
fixed. One should in this case study surface corrections in the canonical 
ensemble. But one expects equivalence of ensembles to hold with an L 3/2 
accuracy in three dimensions. Since in this case the surface term is of order 
L 2, it is possible to express the magnetization in the canonical ensemble Mo 
a s  

Mp=M.(p,B)+ -~ p.(p,B) (4.13) 
p 

where M~,(p, B) is the grand-canonical magnetization that we computed, in 
which the chemical potential/~ has been expressed in terms of the density 

822/76/I-2-15 



202 Kunz 

p by using the bulk relationship between them. p~(p, B) is the surface 
contr ibution to the density in the grand-canonical  ensemble, but with 
expressed in terms of p. 

5. WEAK M A G N E T I C  FIELDS 

In the general case, it is possible to compute  the zero-field suscep- 
tibility, defined as 

X~= lim --M~ (5.1) 
B - o  B 

From Eq. (4.4) we see that this quanti ty is given by 

2e z z A t" 

X~-rnc2 z ~- I IOAI JaA da a(O(tr)) 

where 

(5.2) 

with 

a(O) = lim 1 &,t?o(t) (5.3) 
t ~ O /  

y0(t) = t e-'Xs(x, O) dx (5.4) 

F rom Eq. (2.50), we have 

lcos 01 
yo(t) = t r [ exp  - tH+ - X exp - tHz] (5.5) 

2n 

It  appears  useful to express this quanti ty as a path  integral c7~ 

I+~176 I t2I~ 
dx dy Da Fx(a) exp - 2  ( X +  R(s))  2 ds (5.6) 

Icos 01 oo  

~o(t)-  (2n)2 fo 

In this expression 

X = sin Ox + cos Oy 

R(s) = sin O~x(s) + cos Oc%,(s) 
(5.7) 

and 

if x  x,s, .O orsomes 
to otherwise (5.8) 
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expressing the fact that the paths are constrained to the half-space x >/0. 
The ctx(s) and Cry(S) are independent Brownian bridges, i.e., Gaussian 
processes with covariance 

ct(s)ct(s')=s(1-s') (0~<s~<s'<~ 1) (5.9) 

and zero mean. 
The introduction of these processes is a useful way to extract the 

spatial dependence of the paths in the Wiener integral. 
If we integrate over the y coordinate, we get 

f 1 "~3/2 ~;r t 2 1 

where 

R= ds R(s) (5.11) 

We can deduce an interesting consequence of this representation, namely 

O,tyo(t)>_.O (5.12) 

The meaning of this inequality is the following. If we were using the 
Boltzmann distribution instead of the Fermi one, the surface magnetization 
would be given by 

M____~ = 4___AA [ da 
(5.13) 

We can therefore conclude that in the case of the Boltzmann distribution 
(i.e., at high temperatures in the Fermi case), the surface magnetization is 
paramagnetic for all fields, i.e., Ms i> 0. 

We can also use the path integral to simplify the computation at weak 
fields. Indeed, from (5.10) it follows that 

_f: '~ (2~) 3/2dx l f D~ F,(a) fo (R(s) - ~)2 ds (5.14) a(O)  ~ 

an expression which shows immediately that the weak-field magnetization 
will be also paramagnetic. 

But in fact, (5.14) shows that 

a(O)=a(O)cosZO+a ~ sin 0 (5.15) 
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because the mixed term S Dec (cG(s)- c~x)(G,(s)--0~.,. ) = 0 in Eq. (5.14). We 
are left to compute only a(0) and a(n/2). We have seen in Eq. (2.47) that 

1 ~ --t/n+l\~ 2) yo(t) = 8re ,~o,-- exp (5.16) 

This gives easily 

1 I 
a(0) . . . .  (5.17) 

8n 12 

From Eqs. (2.46) and (3.34) it follows that 

1 
7,/2(t) = (2rtt)l/2 q(t) (5.18) 

and therefore 

( ; )  1 lim l a ,  x/~q(t) (5.19) 
a = ~ , ~ o  t 

The computation of this quantity is a bit more tricky. We will use the rela- 
tionship between surface magnetization and the surface current established 
in Section 3. After some rescaling of the variables, Eq. (3.39) can be written 
a s  

lo, x/~q(t)=-f+~dk ( ~ )  - ~-~n tr x x +  E~(I) 
t oo 

(5.20) 

where 

with 

G(s) = V ; ( s ) -  ZG(s)z 

S ,~ V~(s) =exp - ~  [-0~. + (k+xt) 2] 

(5.21) 

(5.22) 

the operator being defined on the half-line with Dirichlet boundary condi- 
tions. V,(s) is the same operator, but defined on the whole line. If in the 
second term of the expression appearing on the right-hand side of 
Eq. (5.20) we make an integration by parts on the k variable, we can put 
Eq. (5.20) in the more useful form 

~a,x/~q(t)= ~ ~-~ndstrx[x, V ] ( 1 - s ) ]  V;(s) _I +=dk 
(5.231 
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the term corresponding to V k disappearing because it gives a contribution 
odd in k. 

In this form, it is possible to take the limit t ~ 0. In the limit the kernel 
of V~(s)  becomes e-k2/2U,(xl y), with 

1 ( x -  y)2 exp (5.24) 
U~(xl y) = ~  exp 2s 2s J 

Inserting this expression into (5.23), we get after a lengthy computation 

lim 1 a, x/~ q(/) = 1 3 
t -o  t (2n)t/~----- 5 27 (5.25) 

and therefore 

(;) a = 2n 2 7 (5.26) 

Grouping all these results, we get finally 

XS-mc2 z + 1 rc-27 3 IOA[ .4 d~(n(~)-b) 2 (5.27) 

where we have denoted by b the unit vector directed along the magnetic 
field, and we recall that n(e) is the normal at the boundary point e. In the 
case of a cylindrical shape, this formula becomes 

e z z 1 [ ( c o s 2 0 , ) + A 2 ( 3  cos202)]  (5.28) 
X S - m c 2 z + l r c 2 7  2A1 3 3 3 

where At and A2 are the areas respectively of the base and of the lateral 
face of the cylinder, and 0t and 02 designate the angles made by the 
magnetic field with the respective normals to these faces. This formula 
reproduces the result of Angelescu et al. ~1 in the case of a parallelepiped. 
In the case of a sphere, Eq. (5.27) gives 

Ae 2 z 13 
ZS-mc2 z +  1 9~.26 (5.29) 

We note that the zero-field limit is a subtle one and quite probably the 
development in a magnetic field is only asymptotic. 

6. CONCLUSION 

We can briefly summarize the new results we have obtained. First, the 
computation of the surface density of states for convex bodies is reduced to 
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the solution of the Schr6dinger equation for a particle confined to a tilted 
half-plane and subjected to a harmonic potential in the x direction. An 
explicit solution of this last problem in special cases allows us to determine 
completely the surface density of states in two dimensions and for cylindri- 
cal shapes in three dimensions for arbitrary magnetic fields. In the most 
general case, the best we could do was to compute the zero-field magnetic 
susceptibility. 

A more explicit solution of the Schr6dinger equation alluded to would 
allow a complete determination of the surface density of states for arbitrary 
magnetic fields in the three-dimensional case. This is the most important 
remaining problem to be solved in our opinion. 

A P P E N D I X  

We briefly discuss the problem of the asymptotic behavior of the 
density of states. 

If we consider a box made up of the disjoint union of two boxes A~ 
and A2, then for Dirichlet boundary conditions the density of states NA(x) 
satisfies the inequality 

N AluA2(X) >1 N A,(x) + N m(x) (A.1) 

On the other hand, Colin de Verdi6re tS~ has proven that for a cube 

N A(x) <~ IAI n(x) (A.2) 

where n(x) is the bulk density of states (2.48). This inequality can be 
extended to parallelepipeds. From these two sets of inequalities it can be 
proven by standard techniques that 

lim NA(X)=n(x) 
A~-~ IZl 

for a large class of boxes. 
The problem of the surface correction is, however, much more subtle. 

It is known in the case of the Laplacian, i.e., for the problem without a 
magnetic field, that convergence of the difference 

N A ( X ) -  IAI n(x)  
sA(x)  - 

10AI 

cannot hold pointwise, generally. Some assumptions must be made about 
the density of periodic orbits of the corresponding classical system, tgl But 
in statistical mechanics a much weaker kind of convergence is needed at 
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positive temperatures, the so-called weak convergence of measures. It 
guarantees, for example, that the pressure 

f :  e - ' ;  NA (;t_......~) 
p = z  l + z e  - ';" IAI dA (A.3) 

will have the asymptotic  behavior that we derived. Indeed Theorem 2a, 
XIII  1, of Feller I1~ guarantees that this will hold provided SA(X) is negative 
or positive, so that the convergence of its Laplace transform (which we 
proved) will imply convergence of the measure s A ( x ) d x .  In our case the 
Colin de Verdi6re inequality (A.2) guarantees that sA(x)  is negative for 
parallelepipeds. We would expect such a result for large enough convex 
boxes, but have not proved it. 

The pointwise type of convergence would be needed if we were to 
consider the problem at zero temperature and then look at the asymptotic 
behavior for large samples. Fortunately,  from the physical point of view, in 
most situations one needs to consider the other order of limits, first large 
samples and then low temperatures. 
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